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Abstract We used a multifractal characterization of two heavy rainfall events in the London area to quantify 
the uncertainty associated with the rainfall variability at scales smaller than the usual C-band radar 
resolution (1 km2 × 5 min) and how it transfers to sewer discharge forecasts. The radar data are downscaled 
to a higher resolution with the help of a multifractal cascade whose exponent values correspond to the 
estimates obtained from the radar data. A hundred downscaled realizations are thus obtained and input into a 
semi-distributed urban hydrological model. Both probability distributions of the extremes are shown to 
follow a power-law, which correspond to a rather high dispersion of the results, and therefore to a large 
uncertainty. We also discuss the relationship between the respective exponents. In conclusion, we emphasize 
the corresponding gain obtained by higher resolution radar data. 
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INTRODUCTION  

This paper implements multifractal techniques (see Lovejoy & Schertzer, 2007 for a recent 
review), which are standard tools to analyse and simulate geophysical fields, e.g. rainfall, that are 
extremely variable over a wide range of scales, and in urban hydrology to quantify the impact of 
small scale unmeasured rainfall variability. Indeed numerous hydrological studies (see Singh, 1997 
for a review) show that rainfall variability has an impact on the modelled flows, which is more or 
less significant according to the rainfall event and the catchment size and features. In urban areas 
the effects are enhanced because of greater impervious coefficients and shorter response times 
(Aronica & Cannarozzo, 2000; Segond et al., 2007). 
 In this paper we study the mainly urban 910-ha Cranbrook catchment, situated in the London 
Borough of Redbridge, and known for regular local flooding (Gires et al., 2010b). The rainfall data 
are obtained from the Nimrod composites, a radar product of the Met Office in the UK (Harrison 
et al., 2000), whose resolution is 1 km in space and 5 min in time. Here a winter frontal rainfall 
event (9 February 2009) and a summer convective one (7 July 2009) are investigated. Square areas 
of size 64 km2 during 21 hours, centred on the heaviest rainfalls of these events, are analysed. 
Figure 1 displays the total rainfall depth for both events. The very localized rainfall cells of the 
convective July event are clearly visible. 
 In the next sections, first the multifractal properties of the rainfall fields are analysed for both 
events. Then an ensemble of realistic spatially downscaled (to the scale of 125 m) rainfall fields is 
generated with the help of universal multifractal cascades, and the corresponding ensemble of 
hydrographs is simulated. The variability among these ensembles is used to characterize the 
uncertainty due to small-scale unmeasured rainfall variability, mainly on the peak flow. 
 
 
MULTIFRACTALS AND RAINFALL DOWNSCALING  

In this section, the multifractal analysis of the rainfall events and the implemented downscaling 
technique are briefly presented. More details can be found in Gires et al. (2010b).  
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Fig. 1 Map of the total rainfall depth (in mm) over the studied area for the February (left) and July 
(right) events. The coordinate system is the British National Grid (unit: m) 

 
 

 
Fig. 2 For the February event: (a) definition of the scaling moment function (equation (1)) and (b) plot 
of K(q). 

 
 
Multifractals  

In this paper the rainfall field is investigated with the help of universal multifractals, which have 
been extensively used to analyse geophysical fields that are extremely variable over a wide range 
of scales (Lovejoy & Schertzer, 2007; Royer et al., 2008; Nykanen, 2008; Gires et al., 2010a). 
They basically rely on the concept of multiplicative cascades. In that framework the statistical 
moment of arbitrary qth power of the rainfall field Rλ at the resolution λ (=L/l, the ratio between 
the outer scale of the phenomenon and the observation scale) exhibits a scaling behaviour:  

 (1) 

where < > denotes ensemble average (over the different time steps analysed), and  asymptotic 
equivalence. K(q) is the scaling moment function and quantifies the scaling variability of the 
rainfall field. Figure 2(a) displays equation (1) in a log-log plot for the February event. The 
straight lines (the coefficient of determination are all >0.99), whose slopes are K(q), indicate a 
good scaling behaviour and show the relevance of this analysis. Similar curves are found for the 
July event. K(q) is plotted Fig. 2(b). 
 In the specific framework of universal multifractals (Schertzer et al., 1997), K(q) is described 
by three scale independent parameters (UM parameters): C1 the mean intermittency (C1 = 0 for a 
uniform field), α the multifractality index (α = 0 for a monofractal field, and α = 2 for the extreme 
log-normal case), and H the non-conservation (H = 0 for a conservative field). K(q) is given by:  

 (2) 

Greater values of C1 and α correspond to strong extremes. The parameters are estimated with the 
help of the DTM technique and spectral slope (Lavallée et al., 1993). Here the numerical values of 
the UM parameters are quite different for both event. The estimates of α, C1 and H are 1.62, 0.14 
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and 0.56, respectively, for the February event and 0.92, 0.49 and 0.57, respectively, for the July 
event. K(q) plotted with the estimated UM parameters for the February event is displayed in 
Fig. 2(b). The agreement with the empirical curve is very good, and the discrepancies for small 
moments are explained by a multifractal phase transition associated to the influence of the 
numerous zeros (i.e. a pixel of a time step with no rain) (Gires et al., 2010a). The rainfall events 
exhibit two different statistical behaviours (Hubert et al., 1993): indeed for the February event α > 
1 which indicates that the extreme values are not bounded whereas for the July event α < 1 
indicates bounded extreme values. In the multifractal framework, the probability distribution of the 
extreme values observed on a given dataset are expected to follow a power-law (or equivalently, 
the statistical moments cannot be estimated for moments greater than the power law exponent) 
whose exponent strongly depends on C1. Here C1 for the July event is more than three times 
greater than C1 for the February event, indicating a lower theoretical exponent. The effect is 
partially compensated by the greater value of α for the February event. This means that extreme 
values will be observed more frequently for the July event. 
 
Multifractal spatial downscaling of the rainfall field 

A stochastic downscaling technique is used to generate realistic high-resolution rainfall fields 
(Venugopal et al., 1999; Deidda, 2000; Olsson et al., 2001; Ferraris et al., 2002; Rebora et al., 
2006). The framework of the cascade process is well suited to this problem (Biaou et al., 2003), 
since continuing the cascade beyond the observation resolution enables generating a realistic high-
resolution rainfall field. More precisely, for each pixel of 1 km × 1 km three steps of discrete UM 
cascades (Pecknold et al., 1993) are simulated with the UM parameters estimated on the available 
data (i.e. on a range of scale from 1 to 64 km). The final resolution is 125 m × 125 m. This process 
is illustrated in Fig. 3(a). An example of downscaling (which generates rainfall variability inside a 
radar pixel) over the modelled area for a time step of the February event is displayed in Fig. 3(b). 
The downscaling of two consecutive time steps is independent, but the obtained variables remain 
dependant because they are generated from larger structures that are dependent.  
 
 

 
Fig. 3 Illustration (a) and example over the Cranbrook area for a time step of the February event (b) of 
the downscaling technique implemented. 

 
 
RAINFALL–RUNOFF MODEL  

For the Cranbrook catchment, Infoworks CS (Wallingford Software, 2009) was used by Thames 
Water Utilities (2002) to calibrate a semi-distributed (i.e. the area is divided into 51 sub-catchments 
of size ranging from 1 to 62 ha) model that includes the major surface water sewers (Fig. 4). Sub-
catchments are defined by sewer nodes and are considered as being homogeneous. Their discharge is 
computed from the rainfall with the help of a double linear reservoir model. The main parameters are 
the slope and the length (represented with dashed lines in Fig. 4). The simulation parameters were 
maintained unchanged for all simulations. The total rainfall depth over the 51 sub-catchments for the 
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July event is also displayed in Fig. 4. It ranges from 4 to 14 mm, with the heaviest rainfall situated in 
the south near the outlet. A similar distribution with values ranging from 16 to 23 mm is observed for 
the February event. Conduits drain the water from one (for upstream conduits) or several sub-
catchment(s) (for downstream conduits), and their characteristic length Lda is defined as the square 
root of the area drained by the conduit. In this paper the hydrographs of 10 conduits with Lda ranging 
from 370 to 2910 m are analysed (Fig. 4). This enables us to study the impact of the size of the 
studied area on the uncertainty associated with small scale rainfall variability. 
 
 

 
Fig. 4 The Cranbrook Catchment and its underground sewer system. The total rainfall depth over the 51 
sub-catchments for the July event is also displayed. 

 
 
QUANTIFYING THE IMPACT OF SMALL-SCALE UNMEASURED RAINFALL 
VARIABILITY 

An ensemble of 100 realistic rainfall downscaled fields and the corresponding ensemble of 
hydrographs were simulated. The uncertainty associated with small-scale unmeasured rainfall 
variability is quantified by investigating the variability among the ensembles. 
 
Variability among the ensemble of rainfall fields 

To give an insight of the uncertainty on the rainfall fields, for each conduit we evaluated the 
maximum average rainfall intensity (Rmax) over the drained area for each sample of downscaled 
fields. The histogram of these values (one per sample) for the conduit 2 and the February event is 
shown in Fig. 5(a). Similar curves are found for the other conduits and for the July event. It 
appears that the extreme cases (i.e. the right part of the histogram) exhibit a power-law behaviour 
of the form: 

 (3) 

Indeed, this relation in a log-log plot is displayed in Fig 5(b), and the determination coefficient of 
the straight line describing the fall-off of the probability distribution is very good (0.98 ± 0.01 and 
0.97 ± 0.01 for the February and the July event, respectively, according to the conduit). The values 
krain found are plotted against Lda in Fig. 6. First it appears that krain increases with Lda, which 
implies a thinner probability fall-off for larger drained area. It means that the effect of small-scale 
rainfall variability is damped for larger area, which was expected. Second, in general krain is 
smaller for the July event, which reflects the fact that the variability among the ensemble of 
downscaled rainfall fields is greater for the convective event than for the frontal event, which was 
expected due to greater values of C1. 
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Fig. 5 Histograms (right) and determination curve of krain for the maximum average rainfall rate of the 
conduit 2 for the February event. 

 

 
Fig. 6 krain and kflow vs. Lda for the February event (right) and the July event (left). 

 
 
Variability among the ensemble of simulated peak flow 

A similar analysis was performed on the ensemble of simulated hydrographs. For each selected 
conduit, the peak flow and its time of occurrence was retrieved. The first point is that no significant 
influence was found on the time of occurrence. Concerning the peak flow, as for the maximum 
average rainfall, the probability distribution exhibits power-law fall-off (curves similar to Fig. 5(b) 
but for the peak flow are found, with R2 equal to 0.97 ± 0.01 for both events according to the 
conduit). The power-law behaviour means that the uncertainty on the simulated peak flow associated 
to unmeasured small-scale rainfall variability cannot be neglected. It is striking to see that the 
uncertainties are significant despite the coarse resolution of the hydrological model (the average 
square root of sub-catchment area is 380 m) with regard to the resolution of the downscaled rainfall 
fields (125 m). Nevertheless further investigations with hydrological models with greater spatial 
resolution and taking into account the interaction between surface flow and the sewer system (El 
Tabach et al., 2009; Maksimovic et al., 2009) would be needed to fully take advantage of the spatial 
downscaling. Figure 6 displays the exponent kflow vs the characteristic length of the conduit Lda for 
both events. As for krain, kflow tends to increase with Lda. Independently of the event and Lda, the 
variability among the ensemble of rainfall fields is transferred to the ensemble of peak flow with the 
same qualitative features (i.e. a power-law fall-off of the probability distribution). Quantitatively it 
appears that kflow is often (i.e. most of the conduits for the February event and some for the July 
event) greater than krain, which would mean that the rainfall–runoff process slightly dampens the 
variability of the ensemble of rainfall fields. Finally it appears that the variability observed for the 
July event is similar to the one observed up to 1 km for the February event. 
 
 
CONCLUSION 

Multifractal cascades are used to generate an ensemble of realistic downscaled rainfall fields of a 
convective and a frontal rainfall event (after validating this framework for both events). The 
probability distribution of the generated rainfall extremes exhibits a power-law fall-off, which is also 
retrieved on the peak flow of the corresponding simulated ensemble of hydrographs. It means that 
the uncertainty associated with small-scale rainfall variability cannot be neglected. As a consequence 
it is recommended to either take into account this uncertainty in the real-time management of sewer 
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networks or to improve the resolution of rainfall data in urban areas by implementing X-band radars 
whose spatial resolution is roughly 100 m. Concerning the numerical values of the characteristic 
exponents of the power-law fall-off it seems that they are greater for peak flow than for rainfall, and 
for larger areas. They are greater for the frontal event than for the convective one. Nevertheless 
further investigations with other case studies and rainfall events are required to clarify this point. 
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